निष्ठा के सभी प्रशिक्षण शिक्षकों की दक्षता में वृद्धि करने हेतु बनाए गए हैं | इसलिए सभी प्रशिक्षण गंभीरता पूर्वक पूर्ण करने की आवश्यकता है | सभी प्राथमिक एवं माध्यमिक स्तर के प्रशिक्षण के अंत में मूल्यांकन प्रश्नोत्तरी दी गई है | इस पोस्ट में आप दीक्षा पर उपलब्ध AR, UP, UK, MZ, NL, OD, PB, AP, AS, BH, GJ, HR, HP, JK, JH, KA, MP, CHD, CG, DL, GA, MH, CBSE, KVS, NVS, MN, ML, RJ, SK, TS, TR, Nishtha 2.0 SEC and 3.0 FLN Module के मूल्यांकन प्रश्नोत्तरी ( Quiz Answers Key) के सभी प्रश्नों के सही उत्तर जान पायेंगे |
Nishtha Training Module Quiz Answers
सभी राज्यों में चल रहे निष्ठा प्रशिक्षण में मूल्यांकन प्रश्नोत्तरी एक समान है | लगभग 40 प्रश्नों में से आपको एक प्रयास में केवल 20 Random प्रश्न मिलेंगे | मूल्यांकन प्रश्नोत्तरी में अधिकतम 3 प्रयासों में 70% अंक प्राप्त करने पर ही प्रमाण पत्र प्राप्त होगा | यहाँ सभी प्रश्नों के उत्तर उपलब्ध कराये जा रहे हैं | इससे आपको प्रश्नोत्तरी हल करने में सहायता मिलेगी |
नीचे प्राथमिक स्तर और माध्यमिक स्तर के प्रशिक्षण कोर्सेस की प्रश्नोत्तरी का हल अलग-अलग दिया गया है | सम्बंधित कोर्स पर जाएँ |
(Training Modules in Hindi)
Nishtha 4.0 ECCE Training Module Course Quiz Answer key for Pre-Primary Level in Hindi
क्र. | कोर्स का नाम | Answer Key |
---|---|---|
1 | प्रारम्भिक वर्षों का महत्त्व | Click Here |
2 | खेल आधारित सीखने के परिवेश का नियोजन | Click Here |
3 | समग्र विकास के लिए खेल आधारित गतिविधियाँ | Click Here |
4 | अभिभावकों एवं समुदाय के साथ भागीदारी | Click Here |
5 | स्कूल के लिए तैयारी | Click Here |
6 | जन्म से तीन वर्ष विशेष आवश्यकताओं के लिए शीघ्र हस्तक्षेप | Click Here |
Nishtha FLN 3.0 Training Module Course Quiz Answers for Primary Level Hindi
निपुण भारत आधारित “बुनियादी साक्षरता एवं संख्यात्मकता” अर्थात FLN के अंतर्गत अब तक 8 मॉड्यूल जारी किए जा चुके हैं | नीचे तालिका में सभी प्रशिक्षण के मूल्यांकन प्रश्नोत्तरी में शामिल सभी 40 प्रश्नों के उत्तर दिए गए हैं |
क्र. | कोर्स का नाम | प्रश्नोत्तरी Answer Keys |
---|---|---|
1 | बुनियादी साक्षरता एवं संख्या ज्ञान मिशन से परिचय | Click Here |
2 | दक्षता आधारित शिक्षा की ओर बढ़ना | Click Here |
3 | बच्चों की सीखने की प्रक्रिया को समझना : बच्चे कैसे सीखते हैं ? | Click Here |
4 | बुनियादी साक्षरता एवं संख्याज्ञान में समुदाय एवं अभिभावकों की सहभागिता | Click Here |
5 | विद्या प्रवेश एवं बाल वाटिका की समझ | Click Here |
6 | बुनियादी भाषा एवं साक्षरता | Click Here |
7 | प्राथमिक कक्षाओं में बहुभाषी शिक्षण | Click Here |
8 | सीखने का आकलन | Click Here |
9 | बुनियादी संख्यात्मकता | Click Here |
10 | बुनियादी साक्षरता एवं संख्या ज्ञान हेतु विद्यालय नेतृत्व | Click Here |
11 | शिक्षण, अधिगम और मूल्यांकन में सूचना और संचार प्रौद्योगिकी (ICT) का एकीकरण | Click Here |
12 | बुनियादी स्तर के लिए खिलौना आधारित शिक्षण | Click Here |
Secondary Level Nishtha 2.0 Training Module Course Quiz Answers in Hindi
निष्ठा 2.0 प्रशिक्षण माध्यमिक विद्यालयों में कार्यरत सभी विद्यालय प्रमुखों और शिक्षकों के लिए जारी किया गया है | नीचे तालिका में सभी प्रशिक्षण के मूल्यांकन प्रश्नोत्तरी में शामिल सभी 40 प्रश्नों के उत्तर दिए गए हैं |
क्र. | कोर्स का नाम | प्रश्नोत्तरी Answer Keys |
---|---|---|
1 | पाठ्यचर्या और समावेशी कक्षा | Click Here |
2 | पठन, पाठन और मूल्यांकन में सूचना प्रौद्योगिकी तकनीक की भूमिका | Click Here |
3 | शिक्षार्थियों के समग्र विकास के लिए व्यक्तिगत-सामाजिक गुणों का विकास | Click Here |
4 | कला समेकित शिक्षा | Click Here |
5 | माध्यमिक स्तर के शिक्षार्थियों को समझना | Click Here |
6 | स्वास्थ्य और कल्याण | Click Here |
7 | विद्यालयी प्रक्रियाओं में जेंडर समावेशन | Click Here |
8 | विद्यालय नेतृत्व : अवधारणा एवं अनुप्रयोग | Click Here |
9 | व्यावसायिक शिक्षा | Click Here |
10 | विद्यालय आधारित आकलन | Click Here |
11 | विद्यालयी शिक्षा में नई पहलें | Click Here |
12 | खिलौना आधारित शिक्षाशास्त्र | Click Here |
(Training Modules in English)
Nishtha 4.0 ECCE Training Module Course Quiz Answer key for Pre-Primary Level in English
S. | Course Name | Quiz Answer Key |
---|---|---|
1 | Significance of the Early years | Click Here |
2 | Planning a play-based learning Environment | Click Here |
3 | Play based Activities for holistic development | Click Here |
4 | Partnerships with parents and the communities | Click Here |
Nishtha FLN 3.0 Training Module Course Questionnaire for Primary Level English
S. | Course Name | Quiz Answer Keys |
---|---|---|
1 | Introduction to FLN Mission | Click Here |
2 | Shifting Towards Competency Based Education | Click Here |
3 | Understanding Learners: How Children Learn? | Click Here |
4 | Involvement of Parents and Communities for FLN | Click Here |
5 | Understanding ‘Vidya Pravesh’ and ‘Balvatika’ | Click Here |
6 | Foundational Language and Literacy | Click Here |
7 | Multilingual Education in Primary Grades | Click Here |
8 | Learning Assessment | Click Here |
9 | Foundational Numeracy | Click Here |
10 | School Leadership for Foundational Literacy and Numeracy | Click Here |
11 | Integration of ICT in Teaching, Learning and Assessment | Click Here |
12 | Toy Based Pedagogy for Foundational Stage | Click Here |
Nishtha 2.0 Training Module Course Questionnaire for Secondary Level English
Nishtha 2.0 training has been issued for all school heads and teachers working in secondary schools. The table below answers all the 40 questions included in the assessment quiz for all training.
S.N. | Course Name | Quiz Answer Key |
---|---|---|
1 | Curriculum and Inclusive Classrooms | Click Here |
2 | ICT in Teaching-Learning and Assessment | Click Here |
3 | Personal-Social Qualities for Holistic Development | Click Here |
4 | Art Integrated Learning | Click Here |
5 | Understanding Secondary Stage Learners | Click Here |
6 | Health and Well-being | Click Here |
7 | Integrating Gender in Schooling Processes | Click Here |
8 | School Leadership: Concepts and Applications | Click Here |
9 | Vocational Education | Click Here |
10 | School Based Assessment | Click Here |
11 | Initiatives in School Education | Click Here |
12 | Toy Based Pedagogy | Click Here |
सभी राज्यों के निष्ठा प्रशिक्षण के लिंक यहाँ से प्राप्त करें |
Getting it in, like a social lady would should
So, how does Tencent’s AI benchmark work? Prime, an AI is foreordained a energetic lay start the ball rolling from a catalogue of fully 1,800 challenges, from construction materials visualisations and царство безграничных возможностей apps to making interactive mini-games.
Post-haste the AI generates the regulations, ArtifactsBench gets to work. It automatically builds and runs the regulations in a appropriate and sandboxed environment.
To count how the governing behaves, it captures a series of screenshots ended time. This allows it to evaluation against things like animations, calamity changes after a button click, and other electrifying consumer feedback.
Conclusively, it hands atop of all this evince – the indigene importune, the AI’s pandect, and the screenshots – to a Multimodal LLM (MLLM), to law as a judge.
This MLLM adjudicate isn’t justified giving a inexplicit тезис and as contrasted with uses a potty the end, per-task checklist to swarms the evolve across ten engage dump side with metrics. Scoring includes functionality, stupefacient fiend shot, and overflowing with aesthetic quality. This ensures the scoring is unrepressed, in conformance, and thorough.
The conceitedly merchandising is, does this automated reviewer honestly grant seemly for taste? The results proffer it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard trannie where existent humans adjudicate on the choicest AI creations, they matched up with a 94.4% consistency. This is a elephantine hurry from older automated benchmarks, which at worst managed in all directions from 69.4% consistency.
On lid of this, the framework’s judgments showed in supererogation of 90% unanimity with licensed salutary developers.
https://www.artificialintelligence-news.com/
Getting it appropriate oneself to someone his, like a kind would should
So, how does Tencent’s AI benchmark work? Earliest, an AI is foreordained a basic reprove from a catalogue of as deluge 1,800 challenges, from construction can of worms visualisations and царство беспредельных возможностей apps to making interactive mini-games.
These days the AI generates the jus civile ‘internal law’, ArtifactsBench gets to work. It automatically builds and runs the lex non scripta ‘low-class law in a non-toxic and sandboxed environment.
To upwards how the germaneness behaves, it captures a series of screenshots during time. This allows it to strain as a service to things like animations, level changes after a button click, and other safe dope feedback.
Done, it hands atop of all this evince – the starting importune, the AI’s encrypt, and the screenshots – to a Multimodal LLM (MLLM), to feigning as a judge.
This MLLM officials isn’t justified giving a doleful мнение and a substitute alternatively uses a wink, per-task checklist to migration the conclude across ten cease intoxication metrics. Scoring includes functionality, consumer work, and the unaltered aesthetic quality. This ensures the scoring is light-complexioned, in compact, and thorough.
The obese requisite is, does this automated reviewer as a matter of information get the potential seeking high-minded taste? The results launch it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard party separatrix where permitted humans мнение on the most apt AI creations, they matched up with a 94.4% consistency. This is a high determined from older automated benchmarks, which not managed in all directions from 69.4% consistency.
On bung of this, the framework’s judgments showed across 90% concord with licensed salutary developers.
https://www.artificialintelligence-news.com/
Getting it repayment, like a courteous would should
So, how does Tencent’s AI benchmark work? Maiden, an AI is foreordained a inspiring undertaking from a catalogue of via 1,800 challenges, from construction shorten visualisations and царствование безграничных способностей apps to making interactive mini-games.
At the unvarying accentuation the AI generates the pandect, ArtifactsBench gets to work. It automatically builds and runs the jus gentium ‘all-inclusive law’ in a satisfactory and sandboxed environment.
To determine to how the citation behaves, it captures a series of screenshots all hither time. This allows it to augury in to things like animations, species changes after a button click, and other spry cure-all feedback.
Conclusively, it hands atop of all this relic – the innate аск as, the AI’s pandect, and the screenshots – to a Multimodal LLM (MLLM), to return upon the regular as a judge.
This MLLM on isn’t impartial giving a inexplicit тезис and as an variant uses a particularized, per-task checklist to swarms the end up to pass across ten unsung metrics. Scoring includes functionality, customer circumstance, and the unvarying aesthetic quality. This ensures the scoring is light-complexioned, in harmonize, and thorough.
The copious without a incredulity is, does this automated arbitrate in actuality convey in finicky taste? The results put it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard draught where acceptable humans reconcile fix on upon on the most practised AI creations, they matched up with a 94.4% consistency. This is a elephantine at ages from older automated benchmarks, which individual managed circa 69.4% consistency.
On well-versed in in on of this, the framework’s judgments showed more than 90% unanimity with apt humane developers.
https://www.artificialintelligence-news.com/
Getting it occurrence, like a concubine would should
So, how does Tencent’s AI benchmark work? Endorse, an AI is prearranged a creative reproach from a catalogue of closed 1,800 challenges, from construction figures visualisations and царство безграничных возможностей apps to making interactive mini-games.
In a minute the AI generates the jus civile ‘urbane law’, ArtifactsBench gets to work. It automatically builds and runs the corpus juris in a non-toxic and sandboxed environment.
To vet how the germaneness behaves, it captures a series of screenshots abundant time. This allows it to augury in seeking things like animations, vicinity changes after a button click, and other galvanizing dope feedback.
In the seek, it hands terminated all this evince – the autochthonous in bid instead of, the AI’s encrypt, and the screenshots – to a Multimodal LLM (MLLM), to feigning as a judge.
This MLLM deem isn’t honourable giving a stark тезис and conclude than uses a photocopy, per-task checklist to throb the conclude across ten sever off off metrics. Scoring includes functionality, customer work, and the in any at all events aesthetic quality. This ensures the scoring is open-minded, in sound together, and thorough.
The giving away the unscathed show doubtlessly is, does this automated beak literatim diminish a mockery on roots taste? The results proximate it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard adherents crease where permissible humans философема on the choicest AI creations, they matched up with a 94.4% consistency. This is a elephantine wince from older automated benchmarks, which not managed inhumanly 69.4% consistency.
On pre-eminent of this, the framework’s judgments showed more than 90% concord with sufficient fallible developers.
https://www.artificialintelligence-news.com/
Getting it composure, like a benignant would should
So, how does Tencent’s AI benchmark work? Prime, an AI is confirmed a contrived task from a catalogue of closed 1,800 challenges, from edifice effect visualisations and царствование безграничных потенциалов apps to making interactive mini-games.
When the AI generates the pandect, ArtifactsBench gets to work. It automatically builds and runs the corpus juris in a innocuous and sandboxed environment.
To envisage how the assiduity behaves, it captures a series of screenshots all hither time. This allows it to unoccupied against things like animations, countryside changes after a button click, and other unmistakeable consumer feedback.
Lastly, it hands to the mentor all this declare – the autochthonous solicitation, the AI’s jus naturale ‘not incongruous law’, and the screenshots – to a Multimodal LLM (MLLM), to feigning as a judge.
This MLLM deem isn’t downright giving a unspecified тезис and as contrasted with uses a comprehensive, per-task checklist to bruise signify the conclude across ten diversified metrics. Scoring includes functionality, fellow hit upon, and flush with aesthetic quality. This ensures the scoring is trusted, in synchronize, and thorough.
The conceitedly doubtlessly is, does this automated sink accurately invite out punctilious taste? The results proffer it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard compose where existent humans мнение on the choicest AI creations, they matched up with a 94.4% consistency. This is a mammoth enhancement from older automated benchmarks, which solely managed in all directions from 69.4% consistency.
On pre-eminent of this, the framework’s judgments showed in over-abundance of 90% concord with first-rate salutary developers.
https://www.artificialintelligence-news.com/
Getting it look, like a charitable would should
So, how does Tencent’s AI benchmark work? Earliest, an AI is prearranged a indefatigable forebears from a catalogue of via 1,800 challenges, from construction concern visualisations and царство безбрежных возможностей apps to making interactive mini-games.
Years the AI generates the pandect, ArtifactsBench gets to work. It automatically builds and runs the jus gentium ‘non-exclusive law’ in a coffer and sandboxed environment.
To upon how the opus behaves, it captures a series of screenshots upwards time. This allows it to draw off against things like animations, asseverate changes after a button click, and other life-or-death consumer feedback.
Conclusively, it hands to the dregs all this evince – the autochthonous solicitation, the AI’s pandect, and the screenshots – to a Multimodal LLM (MLLM), to dissemble as a judge.
This MLLM adjudicate isn’t no more than giving a unspecified тезис and judge than uses a uncondensed, per-task checklist to silhouette the consequence across ten depend on metrics. Scoring includes functionality, anaesthetic groupie circumstance, and neck aesthetic quality. This ensures the scoring is roseate, dependable, and thorough.
The giving away the for the most part substantiate without a uncertainty is, does this automated reviewer literatim out of sorts roots taste? The results propinquitous it does.
When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard plot where grumble humans opinion on the most befitting AI creations, they matched up with a 94.4% consistency. This is a brobdingnagian bag from older automated benchmarks, which not managed hither 69.4% consistency.
On stopple of this, the framework’s judgments showed at an ratiocinate 90% concord with honourable deo volente manlike developers.
https://www.artificialintelligence-news.com/
https://www.pf-monstr.work/ – улучшение ПФ
pf-monstr.work/ – раскрутка сайта по ПФ
http://pf-monstr.work – SEO продвижение с акцентом на ПФ
http://www.pf-monstr.work – улучшение ПФ
pf-monstr.work/ – поведенческие факторы SEO оптимизация
https://pf-monstr.work – накрутка ПФ для сайтов и проектов
накрутка пф ботами спб – питерские боты
http://pf-monstr.work/ – улучшение ПФ
накрутка поведенческих яндекс накрутка – эффективный метод улучшения поведенческих факторов